Noise Pollution in the Operating Room

Chimene Mathurin, BSN, RN, CCRN and Jeremy Pastor, BSN, RN

Project Mentor: Danny Jijon, MSNA, CRNA, US Anesthesia Partners – Florida

Committee Chair: Alescia DeVasher Bethea, PhD, CRNA, Nurse Anesthesia Department

Problem

- In operating room personnel participating in surgical procedures (P), how do routine surgical-related noises (I) influence critical thinking (O) during the performance of effective clinical care (T)?
- What are the current evidence-based practices for managing operating room noise pollution, as well interventions that may be advantageous in reducing its effect on operating room personnel?

Literature Review

- Noise can be defined as any unwanted sound that interferes with normal hearing, interrupts performance, and is stressful [measured in decibel dB(A) scale]
- Excessive noise levels in the OR can impede the delivery of safe anesthesia care.
- Occupational Regulations of Noise Limits
- Occupational Safety and Health Administration (OSHA): range from 8 hours of exposure at 90 dB(A) to only 15 minutes at 115 dB(A)
- National Institute for Occupational Safety (NIOSH): peak noise levels no more than 140 dB(A)
- Environmental Protection Agency (EPA): limit 35 to 45 dB(A) for ambient OR noises
- Causes of Noise Pollution
 - Staff Related (95%): reach up to 78 dB(A)
 - Equipment: peak of 120 dB(A), some instruments 131-140 dB(A)
 - Inherent Operating Room Environment: baseline 13 dB(A)
- Music as a Potential Distractor
 - Music in the OR is a choice and levels are estimated to be as high as 87 dB(A)
 - Over 60 to 70 percent of personnel report they like to listen to music in the OR
- Implications for Anesthesia Providers
 - Noisiest parts of most non-orthopedic surgeries occur during induction and emergence (most critical moments)
 - Distractions such as background noise can impair or delay provider response to alarms from ventilators and monitors
- Impact on Practice
 - Behavior modification programs can educate staff members about the potential harm of noise pollution and its sources by bringing awareness to noise-reducing strategies

Methods

- With SRC and IRB approval, an educational PowerPoint presentation based on current literature was presented to the AHU SRNA Cohort of 2019
- Pre-test utilized as a knowledge baseline
- After PowerPoint, identical post-test administered
- Data analyzed by AHU statistician

Analysis and Conclusions

- When comparing pre- and post-test mean percentage scores, the post-test scores increased significantly (p < 0.001)
- The outcome of this scholarly project was an increase in awareness and knowledge of current noise pollution in the operating room literature among the AHU SRNA Cohort of 2019

Findings

- Operating room noises cannot be managed alone
- Educate staff members about noise pollution
- Decrease noise levels
 - Avoid unnecessary conversations
 - Turn off music
 - Limit telephone usage
 - Minimize entrance and exit of the operating room
 - Be mindful of patient anxiety

Table 1						
Sources and Effects of Noise						
Intensity dB(A)	Quality	Example	Effect			
10-39	Just audible, very quiet	Whisper	Desired for sleep			
40-59	Quiet	Average home or light traffic	Desired for work			
60	Moderately loud	Normal conversation				
70-89	Loud	Vacuum cleaner, heavy traffic, or telephone ringing	Annoyance			
90-119	Very loud	Pneumatic drill, power mower	Hearing loss			
120-170	Uncomfortably loud	Nightclub, a shotgun blast	Pain and distress			
Note. Adapted from "Noise pollution in the anaesthetic and intensive care environment." by P. C. A.						

Note. Adapted from "Noise pollution in the anaesthetic and intensive care environment," by P. C. Kam, A. C. Kam, & J. F. Thompson, 1994, *Anaesthesia*, 49(11), p. 982-986.

Table 2. Paired Samples Test								- 12
	Paired Differences				t	df	Sig.	
	Mean	Std.	Std. Error Mean	95% Confid	dence Interval			(2-
		Deviation		of the Difference				tailed)
		27		Lower	Upper	297		
Pre-Test – Post-	49048	.21658	.04726	58906	39189	-10.378	20	.000
Test								

Table 3. Paired Samples Test

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pre-Test	.2476	21	.16315	.03560
	Post-Test	.7381	21	.19615	.04280

Acknowledgements

We would like to thank our chair, Dr. Alescia DeVasher Bethea, and our project mentor, Danny Jijon, CRNA, for their input and time into our project.

